CVUT

České vysoké učení technické v Praze
Fakulta stavební -- K 132 - Katedra mechaniky

Předměty aktuálního semestru -- letní 2024/25

přejděte na archiv předmětů od roku 2008 (podle kateder)

semestr letní 2024/25


Advanced Master Project

The assignment of the final thesis is always individual based on the agreement of the teacher and the student. The vast majority of assignments are connected with the scientific and research activities of the respective employee. The output of the solution may be a brief research study of the given problem, experimental activity, programming and others according to the respective assignment.

[1]  in accordance with the specification


Bakalářská práce

Zadání závěrečné práce je vždy individuální na základě dohody pedagoga se studentem. Naprostá většina zadání je spojena s vědecko-výzkumnou činností příslušného pracovníka. Výstupem řešení může být stručná rešeršní studie dané problematiky, experimentální činnost, programování a další dle příslušného zadání.

[1]  Literatura a studijní materiály jsou vždy doporučeny příslušným vyučujícím. Nejčastěji vycházejí z odborných článků, knih a současného stavu poznání příslušného obou.


Bakalářská práce

Zadání závěrečné práce je vždy individuální na základě dohody pedagoga se studentem. Naprostá většina zadání je spojena s vědecko-výzkumnou činností příslušného pracovníka. Výstupem řešení může být stručná rešeršní studie dané problematiky, experimentální činnost, programování a další dle příslušného zadání.

[1]  Literatura a studijní materiály jsou vždy doporučeny příslušným vyučujícím. Nejčastěji vycházejí z odborných článků, knih a současného stavu poznání příslušného obou.


Bachelor Project

The assignment of the final thesis is always individual based on the agreement of the teacher and the student. The vast majority of assignments are connected with the scientific and research activities of the respective employee. The output of the solution may be a brief research study of the given problem, experimental activity, programming and others according to the respective assignment.

[1]  in accordance with the specification


Master’s Thesis

The Dissertation aims at developing research and/or professional competences in the field of conservation and restoration of architectural heritage structures. Students may develop research, compilation or case study theses.

[1]  Technical books and journals depending on a specific topic.


Diplomový seminář

Předmět předchází diplomové práci a připravuje studenty na psaní budoucí práce. Zadání závěrečné práce je vždy individuální na základě dohody pedagoga se studentem. Naprostá většina zadání je spojena s vědecko-výzkumnou činností příslušného pracovníka. Výstupem řešení může být stručná rešeršní studie dané problematiky, experimentální činnost, programování a další dle příslušného zadání.

[1]  Literatura a studijní materiály jsou vždy doporučeny příslušným vyučujícím. Nejčastěji vycházejí z odborných článků, knih a současného stavu poznání příslušného obou.


Diagnostika konstrukcí a budov

Předmět poskytne základní přehled o možnostech využití diagnostických metod a postupů při prevenci a řešení typických tepelně vlhkostních poruch ve stavební praxi, při analýze statického a dynamického chování stavebních konstrukcí. Student se seznámí s pracovními postupy vybraných, často používaných diagnostických metod, dále se způsobem zpracování výsledků a možnostmi jejich využití. Důraz bude kladen na praktické využití diagnostických metod, fyzikální principy budou probírány jen v nezbytné míře. Cvičení budou probíhat formou demonstrace zkušebního vybavení a měřicích postupů avšak s určitou mírou zapojení studentů do řešení úloh (dílčí úkoly při přípravě a realizaci experimentů, ovládání přístrojů a zpracovaní naměřených dat).

Povinná literatura:
[1]  Matuška T.: Experimentální metody v technice prostředí, skripta, Nakladatelství ČVUT, Praha, 2005, ISBN 80-01-03291-4
[2]  Vollmer, M., Mollman, K.-P.: Infrared Thermal Imaging: Fundamentals, Research and Applications, WILEY-VCH Verlag GmbH & Co. KGaA, 2018, ISBN 978-3-527-41351-5
[3]  Tywoniak J. a kol.: Sledování energetických vlastností pasivních domů, Grada, Praha, 2012, ISBN 978-80-247-4277-9
[4]  Novák J.: Vzduchotěsnost obvodových plášťů budov, Grada, Praha, 2008, ISBN 8024719535
[5]  Bilčík, J. – Dohnálek, J. Sanace betonových konstrukcí. Vydavatelství Jaga group v.o.s., Bratislava, 2003, ISBN 80-88905-24-9
[6]  Pirner, M. - Fischer, O. Dynamika ve stavební praxi. Informační centrum ČKAIT, Praha, 2010, ISBN 978-80-87438-18-3
[7]  Lunga, R. – Solař, J. Kostelní věže a zvonice. Grada Publishing, a.s., Praha, 2010, ISBN 978-80-247-1236-9
Studijní pomůcky:
[8]   Studijní materiály na stránkách katedry: https://mech.fsv.cvut.cz/student/

Diplomová práce

Dle zadání diplomové práce.

[1]  Specifikováno při zadání DP.


Diploma Project

The assignment of the final thesis is always individual based on the agreement of the teacher and the student. The vast majority of assignments are connected with the scientific and research activities of the respective employee. The output of the solution may be a brief research study of the given problem, experimental activity, programming and others according to the respective assignment.

[1]  in accordance with the specification


Diplomový seminář

Diplomový seminář si student zapisuje na jedné z kateder vyučujících následně diplomovou práci v rámci studijního programu Stavební inženýrství - Materiály a diagnostika staveb dle vlastního výběru. Témata diplomových seminářů a navazujících diplomových prací vypisují katedry pravidelně v zimním semestru. Témata diplomových seminářů vycházejí z potřeb praxe nebo z odborné činnosti kateder související s řešením profesních témat vzniklých při spolupráci s praxí. Jejich zaměření, rozsah a náročnost odpovídá znalostem studenta získaných během magisterského studia.

[1]  Dle zadání


Dynamics of Structures

The course is devoted to vibration of structures caused by various types of load.

Povinná literatura:
[1]   1. Clough, R.W. and Penzien, J. (1993) Dynamics of structures. McGraw-Hill. ISBN 0-07-113241-4
[2]   2. Bittnar, Z. and Šejnoha, J. (1996) Numerical methods in structural engineering. ASCE Press. ISBN 978-0727725554.

Dynamika konstrukcí budov

Základy teorie kmitání, dynamické zatížení. Vlastní a vynucené kmitání soustav s jedním stupněm volnosti. Tlumené kmitání. Metody řešení kmitání diskrétních soustav.

[1]  Máca J., Kruis J., Krejčí T.: Dynamika stavebních konstrukcí, ČVUT v Praze, 2018, ISBN 978-80-01-05719-3
[2]  Humar J.: Dynamics of Structures, CRC Press/Balkema, 2012, ISBN 978-0-145-62086-4
[3]  Sokol M., Tvrdá K.: Dynamika stavebných konštrukcií, STU Bratislava 2011, ISBN 978-80-227-3587-2
[4]  Máca J.: Dynamika konstrukcí budov, ČVUT v Praze, https://mech.fsv.cvut.cz/web/


Dynamika stavebních konstrukcí 1

Základy teorie kmitání, dynamické zatížení. Vlastní a vynucené kmitání soustav s jedním stupněm volnosti. Tlumené kmitání. Metody řešení kmitání diskrétních soustav.

[1]  Máca J., Kruis J., Krejčí T.: Dynamika stavebních konstrukcí, ČVUT v Praze, 2018, ISBN 978-80-01-05719-3
[2]  Humar J.: Dynamics of Structures, CRC Press/Balkema, 2012, ISBN 978-0-145-62086-4
[3]  Sokol M., Tvrdá K.: Dynamika stavebných konštrukcií, STU Bratislava 2011, ISBN 978-80-227-3587-2
[4]  Máca J.: Dynamika stavebních konstrukcí 1, ČVUT v Praze, 2021, https://mech.fsv.cvut.cz/web/


Experimentální analýza a diagnostika C

Experimenty zaměřené na sledování velikosti klimatických zatížení stavebních konstrukcí (zatížení větrem, sněhem, teplotou), diagnostika stavebních konstrukcí, zkoušky prováděné na fyzikálních modelech stavebních konstrukcí (zákony modelové podobnosti, simulace zemětřesení na vibračních stolech, simulace účinků větru ve větrných tunelech, statické zatěžovací zkoušky na fyzikálních modelech), monitorování stavebních konstrukcí, statické zatěžovací zkoušky (pozemní stavby, průmyslové stavby, mostní objekty), dynamické zatěžovací zkoušky a dynamické informativní zkoušky (pozemní stavby, průmyslové stavby, mostní objekty, lávky pro chodce, účinky technické seizmicity, hodnocení nepříznivých účinků kmitání na lidský organizmus, posuzování vlivu kmitání stavby na instalovaná technologická zařízení).

Povinná literatura:
[1]  Pirner, M. - Fischer, O. Zatížení staveb větrem. Informační centrum ČKAIT, Praha, 2003, ISBN 80-86769-10-0
[2]  Pirner, M. - Fischer, O. Dynamika ve stavební praxi. Informační centrum ČKAIT, Praha, 2010, ISBN 978-80-87438-18-3
[3]  Lunga, R. – Solař, J. Kostelní věže a zvonice. Grada Publishing, a.s., Praha, 2010, ISBN 978-80-247-1236-9
Doporučená literatura:
[4]   ČSN 73 2030 Statické zatěžovací zkoušky stavebních konstrukcí. ÚNMZ, 2019, ISBN 80-88905-24-9
[5]   ČSN 73 6209 Zatěžovací zkoušky mostních objektů. ÚNMZ, 2019.
[6]   ČSN 73 2044 Dynamické zkoušky stavebních konstrukcí. ÚNMZ, 2019.
[7]   ČSN 73 0040 Zatížení stavebních objektů technickou seizmicitou a jejich odezva. ÚNMZ, 2019.
Studijní pomůcky:
[8]   Studijní materiály na stránkách katedry: https://mech.fsv.cvut.cz/student/

Experimentální analýza a diagnostika K

Experimenty zaměřené na sledování velikosti klimatických zatížení stavebních konstrukcí (zatížení větrem, sněhem, teplotou), diagnostika stavebních konstrukcí, zkoušky prováděné na fyzikálních modelech stavebních konstrukcí (zákony modelové podobnosti, simulace zemětřesení na vibračních stolech, simulace účinků větru ve větrných tunelech, statické zatěžovací zkoušky na fyzikálních modelech), monitorování stavebních konstrukcí, statické zatěžovací zkoušky (pozemní stavby, průmyslové stavby, mostní objekty), dynamické zatěžovací zkoušky a dynamické informativní zkoušky (pozemní stavby, průmyslové stavby, mostní objekty, lávky pro chodce, účinky technické seizmicity, hodnocení nepříznivých účinků kmitání na lidský organizmus, posuzování vlivu kmitání stavby na instalovaná technologická zařízení).

Povinná literatura:
[1]  Pirner, M. - Fischer, O. Zatížení staveb větrem. Informační centrum ČKAIT, Praha, 2003, ISBN 80-86769-10-0
[2]  Pirner, M. - Fischer, O. Dynamika ve stavební praxi. Informační centrum ČKAIT, Praha, 2010, ISBN 978-80-87438-18-3
Doporučená literatura:
[3]   Lunga, R. – Solař, J. Kostelní věže a zvonice. Grada Publishing, a.s., Praha, 2010, ISBN 978-80-247-1236-9
[4]   ČSN 73 2030 Statické zatěžovací zkoušky stavebních konstrukcí. ÚNMZ, 2019,
[5]   ČSN 73 6209 Zatěžovací zkoušky mostních objektů. ÚNMZ, 2019.
[6]   ČSN 73 2044 Dynamické zkoušky stavebních konstrukcí. ÚNMZ, 2019.
[7]   ČSN 73 0040 Zatížení stavebních objektů technickou seizmicitou a jejich odezva. ÚNMZ, 2019.
Studijní pomůcky:
[8]   Studijní materiály na stránkách katedry: https://mech.fsv.cvut.cz/student/

Experimental Analysis

Experiments aimed at monitoring the magnitude of climatic loads on building structures (wind, snow, temperature loads), diagnostics of building structures, tests carried out on physical models of building structures (laws of model similarity, simulation of earthquakes on shake tables, simulation of wind effects in wind tunnels, static load tests on physical models), monitoring of building structures, static load tests (civil engineering structures, industrial structures, bridge structures), dynamic load tests and dynamic informative tests (civil engineering structures, industrial structures, bridge structures, footbridges, effects of technical seismicity, assessment of adverse effects of vibrations on the human body, assessment of the effect of vibrations of the structure on installed technological equipment).

[1]  Menčík, J., Introduction to Experimental Analysis. University of Pardubice, Pardubice, 2017, ISBN 978-80-7560-069-1 (pdf).
[2]  Freddi A., Olmi G., Cristofolini L., Experimental Stress Analysis for Materials and Structures. Springer International Publishing, Schwitzerland, 2015, ISBN 978-3-319-06086-6, 978-3-319-06085-9.
[3]  Study materials on the website: https://moodle-vyuka.cvut.cz/?lang=en


Integrated Project of Historical Buildings

This unit is composed of three main parts, as follows: Field trips with presentations on case studies. Seminars on conservation subjects not addressed in the course. Analysis of case studies in groups of 3 to 5 students. Within this unit, students have to develop the inspection, diagnosis, stability analysis, design project, monitoring and maintenance plans of a case study.

[1]  Technical books and journals depending on a specific topic.


Microscopy and Phase Analysis of Construction Mat.

Fundamentals of transmission and reflexion optical microscopy. Polarization of light and its application in the phase study of materials. The sample preparation for microscopical research. Fundamentals of scannig electron microscopy and microanalysis. X-ray phase diffraction and structural analysis. The fundamentals of XRD analysis and its application in the structural and phase exploration of building materials.

[1]  1. Ekertová, L.- Frank, L.: Metody analýzy povrchů. - Elektronová mikroskopie a difrakce. ACADEMIA, 2003.
[2]  2. Kraus, Ivo: Struktura a vlastnosti krystalů. ACADEMIA, 2003.
[3]  3. Král, J., Frank, L.: Metody analýzy povrchů - Iontové a speciální metody. ACADEMIA, 2003.


Pružnost a pevnost A

Předmět se zabývá základní elastoplastickou analýzou prutů a konstrukcí. Jednoosá napjatost - vliv teploty, staticky neurčité případy, přetvoření prutu, rozdělení napětí. Ohyb prutu - prostý a šikmý ohyb, kombinace s osovou silou, napětí, jádro průřezu. Ideální elastoplastický model materiálu pro jednoosou napjatost, mezní plastický stav průřezů a konstrukcí. Stabilita prutů, perfektní a imperfektní prut. Rovinná napjatost - transformace napětí, hlavní napětí, Mohrova kružnice, hlavní napětí. Smykové napětí - smyk za ohybu. Kroucení kruhových, masivních a tenkostěnných průřezů.

[1]  M. Jirásek, V. Šmilauer, J. Zeman: Pružnost, pevnost, plasticita. Elektronická verze skript, 2023
[2]  J. Bittnarová a kol.: Pružnost a pevnost. Příklady, Ediční středisko ČVUT, Praha 2008
[3]  J. Šejnoha a J. Bittnarová: Pružnost a pevnost, Ediční středisko ČVUT, Praha 2006
[4]  S. Šmiřák: Pružnost a plasticita I, PC‐DIR, Brno 1999


Pružnost a pevnost

Základy teorie pružnosti: napjatost a přetvoření přímých prutů namáhaných tahem/tlakem, ohybem a volným kroucením, mezní plastická únosnost prutu při ohybu, kritická zatížení a vzpěrné délky přímých tlačených prutů. Základní předpoklady, veličiny a rovnice pro popis napjatosti a přetvoření v 3D kontinuu, deskách a stěnách.

[1]  Studijní opory připravené vyučujícími dostupné online:
[2]  https://mech.fsv.cvut.cz/homeworks/student/
[3]  http://mech.fsv.cvut.cz/wiki/index.php/Department_of_Mechanics:_Student%27s_corner
[4]  https://moodle-vyuka.cvut.cz/
[5]  Jíra A. a kol.: Sbírka příkladů pružnosti a pevnosti, FSv ČVUT, 2021 (online)
[6]  Šejnoha J., Bittnarová J.: Pružnost a pevnost 10. Vyd. ČVUT Praha 2003. ISBN: 80-01-02742-2.
[7]  Šejnoha J., Bittnarová J.: Pružnost a pevnost 20. Vydavatelství ČVUT Praha 2003. ISBN: 80-01-02709-0.
[8]  Bittnarová a kol.: Pružnost a pevnost. Příklady. Vydavatelství ČVUT Praha 2003. ISBN: 80-01-02743-0.
[9]  Bittnarová a kol.: Pružnost a pevnost 20. Příklady. Vydavatelství ČVUT Praha 2004. ISBN: 80-01-03082-2.
[10]  Megson T. H. G.: Structural and Stress Analysis. Jordan Hill, UNITED KINGDOM: Elsevier Science & Technology 2005. ISBN: 978-0-08-045534-1.


Pružnost a pevnost

V kurzu se studenti seznámí se základními principy mechaniky a jejich užitím při výpočtu napětí v prutech a stability prutů. Dále bude zmíněna typologie stěn a desek včetně zatížení a základních předpokladů pro řešení konstrukcí na počítači.

[1]  Bittnarová, Šejnoha: Pružnost pevnost přednášky, 2006, ISBN:80-01-02742-2
[2]  !Bittnarová, Fajman, Kalousková, Šejnoha: Pružnost Pevnost 10 cvičení, 2000, ISBN:80-01-01635-8
[3]  !Bittnarová, Fajman, Kalousková, Šejnoha: Pružnost Pevnost 20 cvičení, 2000, ISBN:80-01-01835-0
[4]  !Fajman, Kruis: Zatížení a spolehlivost,2008, ISBN:978-80-01-04112-3


Projekt 4C

Zadání projektu je vždy individuální na základě dohody pedagoga se studentem. Naprostá většina zadání je spojena s vědecko-výzkumnou činností příslušného pracovníka. Výstupem řešení může být stručná rešeršní studie dané problematiky, experimentální činnost, programování a další dle příslušného zadání.

[1]  Literatura a studijní materiály jsou vždy doporučeny příslušným vyučujícím. Nejčastěji vycházejí z odborných článků, knih a současného stavu poznání příslušného obou.


Structural Design Project 4

Focus on complex approach to practic design, analysis and optimalization of multi-storey or long-span building structures, or their reconstruction. Analysis of load, functional and technologic requirements, design of load-bearing system alternatives including foundations, preliminary bearing elements dimensions calculation, choice of most suitable version. Detailed statical design of chosen version, calculation, technical report and drawings. Check of bearing and non-bearing structures interaction and assembly techniques. Public presentation.

[1]  in accordance with the specification


Stavební mechanika 1A

Síly v bodě, síly působící na těleso a desku, moment síly k bodu, k ose. Soustavy sil. Podepření tělesa a desky, reakce. Složené soustavy v rovině. Příhradové konstrukce. Vnitřní síly a jejich průběhy na rovinných prutových konstrukcích a složených soustavách. Vnitřní síly a jejich průběhy na prostorové prutové konstrukci. Definice normálového napětí a předpoklady o jeho rozložení v průřezu. Geometrie hmot a rovinných obrazců, těžiště a momenty setrvačnosti.

Povinná literatura:
[1]  Jíra, D. Jandeková, A. Hlobilová, E. Janouchová a L. Zrůbek: Sbírka příkladů stavební mechaniky, Praha: ČVUT, 2017. 116 s. ISBN 978-80-01-06301-9, URL: http://mech.fsv.cvut.cz/wiki/index.php , file Sbirka_prikladu_SUK.pdf
[2]  V. Kufner a P. Kuklík. Stavební mechanika 10. Vyd. 2. Praha: ČVUT, 2000. 166 s. ISBN 80-01-02215-3.
[3]  V. Kufner a P. Kuklík. Stavební mechanika 20. Vyd. 2. Praha: ČVUT, 2001. 137 s. ISBN 80-01-02346-X.
[4]  P. Kabele, M. Polák, D. Rypl a J. Němeček: Stavební mechanika 1. Příklady, ČVUT, 2009. 81 s. SBN: 978-80-0104-282-3
Studijní pomůcky:
[5]  http://mech.fsv.cvut.cz/wiki/index.php/Department_of_Mechanics:_Student''s_corner

Stavební mechanika 2A

Předmět se zabývá základní elastickou analýzou staticky neurčitých konstrukcí. V první části se zavádí energie deformace, princip virtuálních sil, přetvoření na staticky určitých konstrukcích. Maxwellova a Bettiho věta. Silová metoda a její aplikace na staticky neurčité příhradové konstrukce, spojité nosníky, rámy, uzavřené rámy. Symetrické konstrukce se symetrickým a antimetrickým zatížením. Vliv účinků teploty a předepsaných přemístění podpor. Matice poddajnosti konstrukce. Druhá část předmětu probírá princip virtuálních posunů a deformační metodu. Matice tuhosti prutu, nesilové účinky, statická kondenzace, matice tuhosti konstrukce a lokalizace. Počítačové řešení základních typů konstrukcí. Třetí část předmětu se zabývá analýzou desek a zjednodušenými metodami řešení křížem pnutých desek.

[1]  P. Konvalinka et al.: Analýza stavebních konstrukcí - příklady, ČVUT, 2009
[2]  V. Kufner, P. Kuklík: Stavební mechanika 30, ČVUT, 1998
[3]  P. Kuklík, V. Blažek, V. Kufner: Stavební mechanika 40, ČVUT, 2002
[4]  J. Kadlčák, J. Kytýr: Statika stavebních konstrukcí II., VUTIUM, 2009
[5]  T.H.G. Megson: Structural and Stress Analysis, Elsevier, 2005


Stavební mechanika 2

Vnitřní síly a jejich průběhy na rovinných prutových konstrukcích a složených soustavách. Vnitřní síly a jejich průběhy na prostorové prutové konstrukci. Definice normálového napětí a předpoklady o jeho rozložení v průřezu. Geometrie hmot a rovinných obrazců, těžiště a momenty setrvačnosti.

Povinná literatura:
[1]  Jíra, A. a kolektiv: Sbírka příkladů stavební mechaniky. ČVUT, Praha, 2019, ISBN:978-80-01-06301-9 (v současnosti dostupná online na:http://mech.fsv.cvut.cz/wiki/images/6/67/Sbirka_prikladu_SUK.pdf).
[2]   Kufner, V., Kuklík, P.: Stavební mechanika 20, Vydavatelství ČVUT, Praha, 1998, ISBN 80-01-01523-8.
[3]   Kufner, V., Kuklík, P.: Stavební mechanika 30, Vydavatelství ČVUT, Praha, 1998, ISBN 80-01-01893-8.
[4]   Kufner, V., Kuklík, P.: Stavební mechanika 10, Vydavatelství ČVUT, Praha, 1998, ISBN 80-01-01398-7.
Doporučená literatura:
[5]   Beer F. P., Johnston Jr. E. R., Mazurek D.: Vector Mechanics for Engineers: Statics 11th Edition, McGraw-Hill Education, 2016, ISBN 978-0077687304.
Studijní pomůcky:
[6]   Studijní materiály na stránkách katedry: https://mech.fsv.cvut.cz/student/

Stavební mechanika 3

Deformační a silová metoda pro řešení reakcí a vnitřních sil na staticky neurčitých nosnících a prutových a příhradových konstrukcích. Výpočet přemístění nosníků a prutových a příhradových konstrukcí pomocí principu virtuálních prací.

[1]  Studijní opory připravené vyučujícími dostupné online:
[2]  https://mech.fsv.cvut.cz/homeworks/student/
[3]  http://mech.fsv.cvut.cz/wiki/index.php/Department_of_Mechanics:_Student%27s_corner
[4]  https://moodle-vyuka.cvut.cz/
[5]  Kufner V., Kuklík P.: Stavební mechanika 30. Vydavatelství ČVUT Praha 1998. ISBN: 80-01-01893-8.
[6]  Kuklík P., Blažek V., Kufner, V.: Stavební mechanika 40. Vydavatelství ČVUT Praha 2002. ISBN: 80-01-02450-4.
[7]  Jirásek M., Konvalinka P.: Statika stavebních konstrukcí I. Vydavatelství ČVUT Praha, 1989.
[8]  Bittnar Z., Jirásek M., Konvalinka, P.: Statika stavebních konstrukcí II: Příklady. Vydavatelství ČVUT Praha, 1992. ISBN:80-01-00772-3.
[9]  Megson T. H. G.: Structural and Stress Analysis. Jordan Hill, UNITED KINGDOM: Elsevier Science & Technology 2005. ISBN: 978-0-08-045534-1.


Stavební mechanika R1

1. Newtonovy zákony, rovnováha sil, momenty, reakce hmotného bodu. 2. Vazby tuhých desek a hmotných bodů. Výpočet reakcí tuhé desky. 3. Spojité zatížení, výpočet reakcí a vazeb na složených soustavách. 4. Výpočet reakcí na příhradových konstrukcích. Vnitřní síly příhradových konstrukcí, metoda styčných bodů a průsečná metoda. 5. Vnitřní síly na přímých nosnících. 6. Vnitřní síly na lomených a šikmých nosnících. 7. Reakce na prostorové konzole a výpočet vnitřních sil prostorové konzoly. 8. Vnitřní síly na rovinných složených soustavách. 9. Výpočty polohy těžiště na rovinných obrazcích. Momenty setrvačnosti a elipsa setrvačnosti. 10. Analýza napětí průřezu zatíženého normálovou sílou a momentem.

[1]  Dostupné na stránce předmětu SMR1. https://mech.fsv.cvut.cz/student


Stavební mechanika R2

1. Princip virtuálních prací. 2. Výpočet přetvoření konstrukcí s využitím principu virtuálních prací. 3. Bettiho a Maxwellova věta. 4. Základní principy silové metody, využití principu PVP. 5. Výpočet vnitřních sil na přímém nosníku pomocí silové metody. 6. Silová metoda a její použití na staticky neurčité konstrukci. 7. Redukční věta. 8. Rovinný rám, výpočet vnitřních sil pomocí silové metody. 9. Silová metoda, příhradové konstrukce, využití symetrie. 10. Odvození matice tuhosti prutu, princip virtuálních posunů. 11. Deformační metoda, zjednodušená deformační metoda na staticky neurčitých konstrukcích. 12. Zjednodušená deformační metoda (ZDM) výpočet vnitřních sil na spojitých nosnících. 13. ZDM, výpočet vnitřních sil na rovinných rámových konstrukcích.

Povinná literatura:
[1]   Kufner, Kuklík, Stavební mechanika 30, ČVUT, 2003.
[2]   Kuklík, Blažek, Kufner, Stavební mechanika 40, 2002.
[3]   Šejnoha, Bittnarová, Pružnost a pevnost, ČVUT, 2004.
Studijní pomůcky:
[4]   Studijní podklady předmětu SMR 2 na stránce, https://mech.fsv.cvut.cz/student

Stavební mechanika 1

Síly v bodě, síly působící na těleso a desku, moment síly k bodu, k ose. Soustavy sil. Podepření tělesa a desky, reakce. Složené soustavy v rovině. Příhradové konstrukce. Výpočet reakcí principem virtuálních prací.

Povinná literatura:
[1]  Jíra, A. a kolektiv: Sbírka příkladů stavební mechaniky. ČVUT, Praha, 2019, ISBN:978-80-01-06301-9 (v současnosti dostupná online na:http://mech.fsv.cvut.cz/wiki/images/6/67/Sbirka_prikladu_SUK.pdf).
[2]   Kabele P., Polák M., Rypl D., Němeček J.: Stavební mechanika 1 - Příklady, Česká technika - nakladatelství ČVUT, Praha, 2014, ISBN 978-80-01-05604-2.
[3]   Kufner V., Kuklík P.: Stavební mechanika 10, Vydavatelství ČVUT, Praha, 1998, ISBN 80-01-01398-7.
[4]   Kufner, V., Kuklík, P.: Stavební mechanika 30, Vydavatelství ČVUT, Praha, 1998, ISBN 80-01-01893-8.
Doporučená literatura:
[5]  Kufner, V., Kuklík, P.: Stavební mechanika 20, Vydavatelství ČVUT, Praha, 1998, ISBN 80-01-01523-8.
[6]  Beer F. P., Johnston Jr. E. R., Mazurek D.: Vector Mechanics for Engineers: Statics 11th Edition, McGraw-Hill Education, 2016, ISBN 978-0077687304.
Studijní pomůcky:
[7]  Studijní materiály na stránkách katedry: https://mech.fsv.cvut.cz/student/

Stavební mechanika 2

Vnitřní síly a jejich průběhy na rovinných prutových konstrukcích a složených soustavách. Vnitřní síly a jejich průběhy na prostorové prutové konstrukci. Definice normálového napětí a předpoklady o jeho rozložení v průřezu. Geometrie hmot a rovinných obrazců, těžiště a momenty setrvačnosti.

Povinná literatura:
[1]  Jíra, A. a kolektiv: Sbírka příkladů stavební mechaniky. ČVUT, Praha, 2019, ISBN:978-80-01-06301-9 (v současnosti dostupná online na:http://mech.fsv.cvut.cz/wiki/images/6/67/Sbirka_prikladu_SUK.pdf).
[2]   Kufner, V., Kuklík, P.: Stavební mechanika 20, Vydavatelství ČVUT, Praha, 1998, ISBN 80-01-01523-8.
[3]   Kufner, V., Kuklík, P.: Stavební mechanika 30, Vydavatelství ČVUT, Praha, 1998, ISBN 80-01-01893-8.
[4]   Kufner, V., Kuklík, P.: Stavební mechanika 10, Vydavatelství ČVUT, Praha, 1998, ISBN 80-01-01398-7.
Doporučená literatura:
[5]   Beer F. P., Johnston Jr. E. R., Mazurek D.: Vector Mechanics for Engineers: Statics 11th Edition, McGraw-Hill Education, 2016, ISBN 978-0077687304.
Studijní pomůcky:
[6]   Studijní materiály na stránkách katedry: https://mech.fsv.cvut.cz/student/

Stavební mechanika 3

Deformační a silová metoda pro řešení reakcí a vnitřních sil na staticky neurčitých nosnících a prutových a příhradových konstrukcích. Výpočet přemístění nosníků a prutových a příhradových konstrukcí pomocí principu virtuálních prací.

[1]  Studijní opory připravené vyučujícími dostupné online:
[2]  https://mech.fsv.cvut.cz/homeworks/student/
[3]  http://mech.fsv.cvut.cz/wiki/index.php/Department_of_Mechanics:_Student%27s_corner
[4]  https://moodle-vyuka.cvut.cz/
[5]  Kufner V., Kuklík P.: Stavební mechanika 30. Vydavatelství ČVUT Praha 1998. ISBN: 80-01-01893-8.
[6]  Kuklík P., Blažek V., Kufner, V.: Stavební mechanika 40. Vydavatelství ČVUT Praha 2002. ISBN: 80-01-02450-4.
[7]  Jirásek M., Konvalinka P.: Statika stavebních konstrukcí I. Vydavatelství ČVUT Praha, 1989.
[8]  Bittnar Z., Jirásek M., Konvalinka, P.: Statika stavebních konstrukcí II: Příklady. Vydavatelství ČVUT Praha, 1992. ISBN:80-01-00772-3.
[9]  Megson T. H. G.: Structural and Stress Analysis. Jordan Hill, UNITED KINGDOM: Elsevier Science & Technology 2005. ISBN: 978-0-08-045534-1.


Structural Mechanics 3

Analysis of statically indeterminate structures by the slope-deflection method and the force method. Principle of virtual work.

[1]  1. R. C. Hibbeler: Structural Analysis in SI Units, 10th Edition, Pearson, 2019
[2]  2. P. Řeřicha: Structural mechanics 40, Statically indeterminate structures, CTU in Prague, 2003


Structural Mechanics 2

The principal objective of the course is to familiarise students with the application of basic principles of mechanics to the determination of the distribution of internal forces in statically determined structures, cross-sectional properties and the elementary definition of stress.

[1]  [1] W.F. Riley, L.D. Sturges, Engineering Mechanics - Statics, JOHN WILEY & SONS, INC., New York, 1993, ISBN 9780471053330
[2]  [2] S. Timoshenko, Strength of materials - Part I, Elementary theory and problems, D. VAN NOSTRAND COMPANY Inc., New York, 1930


Víceúrovňový popis cementových kompozitů

Cementové kompozity (malty, betony) tvoří základ dnešní civilizace a stavebnictví. Vlastnosti těchto kompozitů lze měnit v širokém spektru dle požadovaných vlastností. Předmět představuje víceúrovňový popis těchto cementových kompozitů, od atomární úrovně až po úroveň stavební konstrukce. Zahrnuje přehled vybraných experimentálních metod používaných k identifikaci elasticity, viskoelasticity, pevnosti, hydratačního tepla, či chemického složení. V předmětu jsou zavedeny analytické a numerické metody. Předmět je doplněn o celou řadu inženýrských aplikací, na kterých byly tyto metody úspěšně použity: návrhy a optimalizace masivních betonových konstrukcí, speciální trvanlivé konstrukce, stříkané betony, alkalicky‐aktivované úletové popílky a kompozity vyztuženými vlákny. V praktické sekci studenti navštíví laboratoř elektronové mikroskopie, nanoindentace, vyzkouší měření teplot při hydrataci a použití konečněprvkového softwaru OOFEM pro výpočet teplot na masivních betonových konstrukcích.

[1]  A. M. Neville: Properties of Concrete, Pearson India, 5th Ed., ISBN 978-8131791073, 2012
[2]  K. Scrivener, R. Snellings, B. Lothenbach (Eds.): A Practical Guide to Microstructural Analysis of Cementitious Materials, ISBN 978-1138747234, CRC Press, 2017
[3]  Z.P.Bažant, M.Jirásek: Inelastic Analysis of Structures, Wiley, 978-0471987161, 2001


Variational Principles in Continuum and Structural Mechanics

Students will be guided to explore the general structure of discrete, continuum and discretized models used in linear and nonlinear statics and dynamics of structures (beams, frames, plates) and solid bodies. Emphasis will be placed on the universal nature of the underlying fundamental principles, such as the principle of virtual work (or power) and variational principles (Lagrange, Castigliano, Hellinger-Reissner, Hu-Washizu, Hashin-Shtrikman, Hamilton), and on the duality between static and kinematic equations/operators. Tensorial notation will be introduced and used throughout the course.

[1]  Lecture notes prepared by the instructor
[2]  M. Jirásek, Z. P. Bažant: Inelastic Analysis of Structures, Wiley 2002
[3]  M. Itskov: Tensor Algebra and Tensor Analysis for Engineers, Springer 2013


Experimentální a numerická analýza 3D tištěných vzorků

Cílem předmětu je prakticky si vyzkoušet návrh a výrobu konstrukcí pomocí 3D tisku (technologie plastového tisku FDM, SLA a SLS), jejich následné destruktivní testování a porovnání výsledků s numerickým výpočtem.

[1]  budou upřesněny. Obecně se jedná o základy 3D tisku a jednoduchých mechanických zkoušek.


Korelace digitálního obrazu v exp. mechanice

Korelace digitálního obrazu (známá jako DIC = Digital Image Correlation) je optická metoda umožňující sledování pole posunů a deformací. Její princip je založen na změně tvaru a posunu náhodného vzoru na povrchu zatěžovaných těles. Metoda je relativně nenáročná na přístrojové vybavení měřicí linky, nicméně podávané výsledky jsou přesné a dobře graficky reprezentovatelné. Zároveň je tato metoda vhodným mezistupněm mezi experimenty (experimentální analýzou) a výpočty prováděnými pomocí matematických modelů. O rostoucí popularitě optického vyhodnocování deformací a posunů pomocí korelace digitálního obrazu svědčí i mnoho publikací, včetně hojně citovaných článků v mezinárodních impaktovaných časopisech.

[1]  David Chambers: Digital Image Correlation: Advanced Methods and Applications (Materials Science and Technologies).


Mikromechanika cementových kompozitů

Cementové kompozity tvoří základ dnešní civilizace a stavebnictví; tradiční beton je nyní nejvíce vyráběným materiálem na světě s průměrnou spotřebu přes 1 m3 / osobu / rok. Vlastnosti těchto kompozitů lze měnit v širokém spektru dle potřeb - tlaková pevnost do 800 MPa, dotvarování, smrštění, odolnost proti vlivům prostředí či vznik trhlin. Předmět představuje víceúrovňový popis těchto cementových kompozitů, od atomární úrovně až po úroveň stavební konstrukce. Zahrnuje přehled experimentálních metod používaných k identifikaci vlastností, analytických a numerických metod pro modelování hydratace, přenos tepla, elasticity, dotvarování a pevnosti přes různé úrovně rozlišení. Předmět je doplněn o celou řadu inženýrských aplikací, na kterých byly tyto metody úspěšně použity - návrhy a optimalizace masivních betonových konstrukcí (oblouky s chlazením, základové bloky, návodní líce přehrad), cementobetonové dálniční kryty s prodlouženou trvanlivostí, stříkané betony s náhradou Portlandského cementu sulfovápenatými pojivy, inovované materiály odolné k trhlinkování, alkalicky-aktivované úletové popílky. Většina použitých numerických modelů byla implementována do open-source softwaru OOFEM, který můžete volně použít například pro vaši předpověď teplot během hydratace, analýzu napětí a trhlin včetně vlivu výztuže a okrajových podmínek.

[1]  V. Šmilauer: Multiscale hierarchical modeling of hydrating concrete, Saxe-Coburg Publications, 2015
[2]  R. Bárta: Chemie a technologie cementu, AVČR, 1961
[3]  A. Neville: Properties of concrete, 2011
[4]  R.W.Burrows: The visible and invisible cracking of concrete, ACI, 1998
[5]  H.W.F. Taylor: Cement chemistry, 1997
[6]  W. Czernin: Cement chemistry and physics for civil engineers, 1962
[7]  O. Bernard, F.-J. Ulm, E. Lemarchand: A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials, Cement and Concrete Research 33, 1293-1309, 2003


Mikromechanika a popis mikrostruktury materilálů

Předmět je zaměřen na seznámení s moderními měřícími metodami a jejich návazností na výpočetní metody pro stanovení mikromechanických charakteristik a dále jejich uplatnění pro popis materiálů. V popředí zájmu jsou cementové kompozity a geopolymery. Předmět bude obsahovat základy z následujících oblastí: -Experimentální metody mikromechaniky- především nanoindentace, mikroskopie atomových sil a elektronová mikroskopie pro různé typy materiálů. -Metody stanovení mikromechanických vlastností pro heterogenní mikrostruktury v submikrónové oblasti. -Modely pro popis mikrostruktury stavebních materiálů. -Metody výpočtu vlastností kompozitu a homogenizace (analytické, MKP, FFT). -Kalorimetrie. -Praktická měření a aplikace na stavební materiály.

[1]  Joseph I. Goldstein, Dale E. Newbury, Joseph R. Michael, Nicholas W.M. Ritchie, John Henry J. Scott, David C. Joy, Scanning Electron Microscopy and X-Ray Microanalysis, Springer 2003.
[2]  Bert Voigtländer, Scanning Probe Microscopy: Atomic Force Microscopy and Scanning Tunneling Microscopy (NanoScience and Technology) Springer, 2015
[3]  Fischer-Cripps, Anthony C., Nanoindentation, Mechanical Engineering Series, Springer, 2nd ed. 2004, XXII, 264 p.
[4]  M L. Oyen, Handbook of Nanoindentation: With Biological Applications, Pan Stanford Publishing, 2010
[5]  W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research, Volume 7 / Issue 06 / 1992, pp 1564-1583
[6]  J. Němeček, Nanoindentation of Heterogeneous Structural Materials. 1. ed. Praha: ČVUT v Praze, 2010. 99 p. ISBN 978-80-01-04501-5.


Programování inženýrských výpočtů v MATLABu

Kurz volně navazuje na předmět "Programování inženýrských výpočtů v MATLABu 1“. Snahou je rozvinout algortimizační schopnosti studentů při řešení jejich inženýrských nebo vědeckých projektů.

[1]  https://sites.google.com/site/xsykorj3course/132xpm2


Programování inžen. výpočtů v C++ 2

Pokročilý kurz programovacího jazyka C++ s ohledem na tvorbu programů pro řešení inženýrských úloh.

[1]  Miroslav Virius - Programování v C++
[2]  Bruce Eckel - Thinking in C++, 2nd ed. Volume 1


Stavební mechanika 2 - repetitorium

Doplňkové cvičení k předmětům SM02 a SMA1, kde bude výuka vysvětlována s důrazem na pochopení základních principů a jednoduchost. Výuka bude mít formu doučování k řádným cvičení s prostorem pro dovysvětlení řešené problematiky.

[1]  příkladové skriptum:
[2]  https://mech.fsv.cvut.cz/wiki/images/6/67/Sbirka_prikladu_SUK.pdf


Stavební mechanika 3 - repetitorium

Doplňkové cvičení k předmětům 132SM3, 132SMA2 a 132SMR2, kde bude výuka vysvětlována s důrazem na pochopení základních principů a jednoduchost. Výuka bude mít formu doučování k řádným cvičení s prostorem pro dovysvětlení řešené problematiky.

[1]  příkladové skriptum:
[2]  https://mech.fsv.cvut.cz/wiki/images/9/9e/Sbirka_prikladu_SNK.pdf


Venkovské hist.objekty, statika a rekonst.

1. Venkovské stavby v regionech Čech, Moravy a Slezka. 2. Problematika základových konstrukcí. 3. Problematika svislých konstrukcí. 4. Vodorovné konstrukce. 5. Nosné konstrukce střech. 6. Klenby, mostky, lávky. Pozornost je zaměřena k výše uvedeným tématům z hlediska příčin vzniku poruch, jejich diagnostikování, a možným způsobům provedení oprav.

[1]  Stránky předmětu.


Diagnostika stavebních konstrukcí

Diagnostické systémy, monitorování stavebních konstrukcí a jejich uplatnění v diagnostice, měřicí linka a její členy, radarová interferometrie, korelace digitálního obrazu, tenzometrie a jejich aplikace v diagnostice, využití statické zatěžovací zkoušky, dynamické zatěžovací zkoušky, experimentální modální analýzy, validace a identifikace teoretických modelů existující stavby, vyšetřování trhlin, stanovení materiálových vlastností, experimentální postupy používané pro stanovení velikosti osových a předpínacích sil v konstrukčních prvcích stavebních konstrukcí.

Povinná literatura:
[1]  Bilčík, J. – Dohnálek, J. Sanace betonových konstrukcí. Vydavatelství Jaga group v.o.s., Bratislava, 2003, ISBN 80-88905-24-9
Doporučená literatura:
[2]  Pirner, M. - Fischer, O. Zatížení staveb větrem. Informační centrum ČKAIT, Praha, 2003, ISBN 80-86769-10-0
[3]  Pirner, M. - Fischer, O. Dynamika ve stavební praxi. Informační centrum ČKAIT, Praha, 2010, ISBN 978-80-87438-18-3
[4]  Lunga, R. – Solař, J. Kostelní věže a zvonice. Grada Publishing, a.s., Praha, 2010, ISBN 978-80-247-1236-9
Studijní pomůcky:
[5]  Studijní materiály na stránkách katedry: https://mech.fsv.cvut.cz/student/

Statika v architektuře

Cílem předmětu je především uvést studenta do praxe v navrhování staveb a jejich konstrukčních systémů, nikoliv vyučovat látku, která je již obsahem povinných předmětů studia. Přednášky jsou pojaty volnou formou, prezentují problematiku návrhu kompletních konstrukčních systémů pozemních staveb či inženýrských konstrukcí, a případně pojednávají o principu statické funkce jednotlivých prvků, výhodách a nevýhodách jejich použití, způsobu přenosu zatížení a základním principu jejich posouzení z hlediska únosnosti i použitelnosti. Součástí přednášek jsou prezentace konkrétních staveb, fotodokumentace provádění staveb, vzvané prezentace odborníků z praxe, případně i exkurze na stavbu. Snahou je rozšíření teoretických vědomostí o praktické části zajímavou a netradiční formou. Předmět je rozšířením volitelného předmětu 132XKPA.

Povinná literatura:
[1]  Jíra, A. a kol.: Sbírka příkladů pružnosti a pevnosti, ČVUT v Praze, 2020, ISBN: 978-80-01-06810-6, dostupné online: http://mech.fsv.cvut.cz/wiki/images/7/78/Sbirka_PRPE.pdf
[2]  Jíra, A. a kol.: Sbírka příkladů stavební mechaniky: princip virtuálních sil, silová metoda, deformační metoda, ČVUT v Praze, 2019, ISBN: 978-80-01-06677-5, dostupné online: http://mech.fsv.cvut.cz/wiki/images/9/9e/Sbirka_prikladu_SNK.pdf
Doporučená literatura:
[3]  Martil, P.: Theory of Structures: Fundamentals Framed Structures, Plates and Shells, Wiley, 2013, ISBN: 978-3-433-02991-6
[4]  Zákon č. 183/2006 Sb. - stavební zákon a související předpisy, Vyhláška č. 268/2009 Sb. o technických požadavcích na stavby, dostupné online: https://www.zakonyprolidi.cz/cs/2009-268
[5]  Petříčková, M.: Konstrukce a architektura, Vutium, 2012, ISBN: 978-80-214-4422-5

Mikromechanika cementových kompozitů

Cementové kompozity tvoří základ dnešní civilizace a stavebnictví; tradiční beton je nyní nejvíce vyráběným materiálem na světě s průměrnou spotřebu přes 1 m3 / osobu / rok. Vlastnosti těchto kompozitů lze měnit v širokém spektru dle potřeb - tlaková pevnost do 800 MPa, dotvarování, smrštění, odolnost proti vlivům prostředí či vznik trhlin. Předmět představuje víceúrovňový popis těchto cementových kompozitů, od atomární úrovně až po úroveň stavební konstrukce. Zahrnuje přehled experimentálních metod používaných k identifikaci vlastností, analytických a numerických metod pro modelování hydratace, přenos tepla, elasticity, dotvarování a pevnosti přes různé úrovně rozlišení. Předmět je doplněn o celou řadu inženýrských aplikací, na kterých byly tyto metody úspěšně použity - návrhy a optimalizace masivních betonových konstrukcí (oblouky s chlazením, základové bloky, návodní líce přehrad), cementobetonové dálniční kryty s prodlouženou trvanlivostí, stříkané betony s náhradou Portlandského cementu sulfovápenatými pojivy, inovované materiály odolné k trhlinkování, alkalicky-aktivované úletové popílky. Většina použitých numerických modelů byla implementována do open-source softwaru OOFEM, který můžete volně použít například pro vaši předpověď teplot během hydratace, analýzu napětí a trhlin včetně vlivu výztuže a okrajových podmínek.

[1]  V. Šmilauer: Multiscale hierarchical modeling of hydrating concrete, Saxe-Coburg Publications, 2015
[2]  R. Bárta: Chemie a technologie cementu, AVČR, 1961
[3]  A. Neville: Properties of concrete, 2011
[4]  R. W. Burrows: The visible and invisible cracking of concrete, ACI, 1998
[5]  H. F. W. Taylor: Cement chemistry, ThomasTelford, 1997


Nelineární analýza materiálů a konstrukcí

Studenti se seznámí s koncepcí lineární stability a pružnoplastického výpočtu únosnosti. Lineární stabilita - stanovení kritického zatížení, stanovení tvaru vybočení. Analýza konstrukcí podle teorie II. řádu - podmínky rovnováhy na deformované konstrukci, matice počátečních napětí. Pružnoplastická analýza konstrukcí - stanovení mezní únosnosti, stanovení průběhu vnitřních sil na mezi únosnosti, stanovení tvaru kolapsu na mezi únosnosti - statická přírůstková metoda, kinematická metoda. Řešení úloh stability a pružnoplastické analýzy v prostředí víceúčelového programu založeného na MKP.

Povinná literatura:
[1]  Máca J., Konvalinka P.: CAL - doplňkové skriptum, Vydavatelství ČVUT, Praha, 2003. ISBN: 80-01-02673-6.
[2]  Jirásek M., Zeman J.: Přetváření a porušování materiálů. Vydavatelství ČVUT, Praha, 2006. ISBN: 978-80-01-05064-4.
[3]  Bathe K.J.: Finite Element Procedures, Prentice Hall, 2006. ISBN:978-0-9790049-0-2.
[4]  Bažant Z.P., Cedolin L.: Stability Of Structures: Elastic, Inelastic, Fracture And Damage Theories, World Scientific Publishing Company, 2010, ISBN:978-9814317030.
Studijní pomůcky:
[5]   ADINA R&D, ADINA Theory and modeling guide.

Numerická analýza transportních procesů

Studenti se seznámí se základy nejpoužívanějších numerických metod pro řešení stacionárních a nestacionárních úloh vedení tepla a vlhkosti v porézních materiálech jako jsou metoda sítí, metoda konečných prvků, metoda konečných objemů a metoda hraničních prvků. Metodě konečných prvků (MKP) je věnována největší pozornost. Je zde podrobně vysvětlen princip a odvození MKP pro transportní procesy - prostorová a časová diskretizace, konečné prvky - typy, aproximační funkce, numerická integrace. Studenti si procvičí řešení jednoduchých příkladů pomocí MKP a vyzkouší si počítačovou implementaci MKP.

Povinná literatura:
[1]  Z. Bittnar - J. Šejnoha: Numerické metody mechaniky I a II, ČVUT Praha, 1992. ISBN 80-01-00855-X.
[2]  K. Rektorys a spol.: Přehled užité matematiky I a II, vydavatelství Prometheus, s.r.o., 1995. ISBN 80-85849-72-0.
[3]  K. Rektorys: Variační metody v inženýrských problémech a v problémech matematické fyziky, Akademie věd České republiky, 1999. ISBN 80-200-0714-8.
[4]  R. Černý: Fyzika. Transportní jevy (skriptum), ČVUT Praha, 1993. ISBN 80-01-01040-6.
[5]  R. Černý: Řešení transportních procesů na počítači (skriptum), ČVUT Praha, 1997. ISBN 80-01-01580-7.
Doporučená literatura:
[6]  O. C. Zienkewicz and R. L. Taylor: The Finite Element Method, Volume 1, The Basis, Fifth Edition, Butterworth-Heinemann, 2005. ISBN 978-1-85617-633-0.
[7]  R. W. Lewis, B. Schrefler: The Finite Element Method in the Static and Dynamic Deformation and Consolidaion of Porous Media, Second Edition, John Wiley and Sons Ltd, 2000. ISBN 0-471-92809-7.
[8]  H. M. Künzel - K. Kiessl: Calculation of Heat and Moisture Transfer in Eposed Buliding Componets, Int. J. Heat Mass Transfer, 40, 159-167, 1997

Numerická analýza konstrukcí 2

Pokročilý kurz zaměřený na metodu konečných prvků. Formulace deskových prvků vzcházejících z Kirchhoffovy a Midlinovy hypotézy, deskové konstrukce na pružném podloží. Úvod do nelinárních problémů, geometrická a materiálová nelinearita, metody řešení nelineárních rovnic.

[1]  Bittnar, Sejnoha: Numerické metody mechaniky I a II, nakladatelství ČVUT, 1992
[2]  Patzák: Přednášky z předmětu NAK2, elektronická verze, 2017


Numerické metody v inž. úlohách

Předmět se věnuje základním numerickým metodám, které lze využít při řešení velkých soustav algebraických rovnic a okrajových či počátečních úloh. V souvislosti s řešením diferenciálních rovnic je představena metoda konečných diferencí a metoda konečných prvků z pohledu inženýra i matematika.

Doporučená literatura:
[1]   J. B. Tebbens, I. Hnětynková, M. Plešinger, Z. Strakoš, P. Tichý: Analýza metod pro maticové výpočty. Základní metody. MatfyzPress, 2011, ISBN 978-80-7378-201-6.
[2]   G. H. Golub, C. F. Van Loan: Matrix Computations. The Johns Hopkins University Press, 3. vydání, 1996 ISBN 9780801854149.
[3]   I. Shames and C. Dym, Energy and finite element methods in structural mechanics. Taylor & Francis, 1991, ISBN 9781351451437.
[4]   D. Braess: Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, Cambridge University Press; 3rd edition, 2007, ISBN 978-0415061391.
[5]   A. Ern and J.-L. Guermond: Theory and Practice of Finite Elements, Springer; 2004, ISBN 978-1-4757-4355-5.

Výpočty konstrukcí na počítači 1

Tvorba statických modelu konstrukce, příprava vstupních dat, výpočet, vyhodnocení a kontrola výsledků. Řešení prutových konstrukcí, obloukových konstrukcí, stěn, desek, kleneb, krovů. Používané programy RFEM-Dlubal, SCIA Engineer.

Doporučená literatura:
[1]  Uživatelská příručka systému RFEM Dlubal
[2]  Uživatelská příručka systému SCIA engineer
[3]  Odborný posudek - statický výpočet NKP Zámek Bojnice: Fajman - ČVUT, 2018, HČ 8301804A006
[4]  Statické posouzení - únosnosti zdi zděné na maltových pásových ložích v objektu Bytové domy Nad školou Trutnov dům č.4: Fajman - ČVUT, 2017, HČ 8301704A183

Výpočty konstrukcí na počítači 2

Mezní únosnost rámových konstrukcí. Stabilitní analýza konstrukcí. Základy teorie 2.řádu. Nosníky a rošty na pružném podloží. Deskové a stěnové konstrukce. Základy řešení úloh dynamiky konstrukcí. Verifikace výsledků.

[1]  Bittnar Z., Šejnoha J.: Numerické metody mechaniky 1, 2, Vydavatelství ČVUT, Praha 1992.


Statika a rekonstrukce histor. konstr.

Stručný přehled historických kleneb a krovů. Jejich statické působení a nejčastější příčiny poruch. Možné způsoby sanace skutečných poruch včetně změn základových podmínek. Nejčastější statické poruchy panelových objektů. Exkurze do historické části Pražského hradu.

[1]  1. Vinař, J., Kufner, V., Horová, I.: Historické krovy, Elconsult 1995, 2. Lipanská, E.: Historické klenby, Elconsult 1997, 3. Manuál k výpočetnímu systému SCIA, Dlubal ,


Univerzální principy mechaniky

Tenzory, diferenciální operátory a jejich využití v mechanice, Gaussova a Greenova věta. Obecná struktura základních rovnic lineární a nelineární statiky, energie a dualita. Princip virtuálních prací (výkonů), variační principy (Lagrange, Castigliano, Hellinger-Reissner, Hu-Washizu) a jejich využití při popisu spojitých a diskrétních modelů prutových, deskových, stěnových a prostorových konstrukcí.

[1]  Povinná literatura:
[2]  1. Studijní text vytvořený přednášejícím
[3]  2. Bittnar Z., Šejnoha J.: Numerické metody mechaniky 1, 2, Vydavatelství ČVUT, Praha 1992
[4]  3. Jirásek M., Bažant, Z.P.: Inelastic Analysis of Structures, Wiley 2001.
[6]  Doporučená literatura:
[7]  4. M. Itskov: Tensor Algebra and Tensor Analysis for Engineers, Springer 2013


 

Zpět na:
Stránku ČVUT
Stránku fakulty
Seznam kateder

Problémy, připomínky a doporučení směrujte prosím na
webmaster@fsv.cvut.cz